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We describe the development of Fork-AFM for investigating of human blood cell morphology, namely 
erythrocytes with high-resolution imaging. The measurements were compared with Fork-AFM using silicon 
cantilever tip on erythrocytes for two modes operation: shear-force and intermittent contact modes. We 
have glued directly the tips to the prong of tuning fork. The received results shown that the capabilities of 
the combination of AFM and tuning fork could quantitatively analyze the properties of surface of erythro-
cytes samples with high precision and resolution. Furthermore, it suggests that Fork-AFM can become a 
very useful and reliable tool in the study of biomolecules. 

Introduction 
Since its invention [1], atomic force microscopy (AFM) is increasingly becoming a tool 

for high-tech industrial applications. Nowadays, AFM development can be considered as a 
key point for advances in nanoscience and nanotechnology. Especially, AFM has proven to be 
a powerful tool for biological studies. Applications include imaging molecules [2–5], cells  
[6–8] tissues [9, 10] biomaterials [11–13], and measuring forces [14–18]. However, the use of 
a diode laser in AFM introduces several problems. First of all, it introduces noise in the setup 
due to thermal mode hopping of the laser and drift caused by heat dissipation of the laser di-
ode. Second, the alignment of the laser beam on the cantilever and the position sensitive photo 
detector is an elaborate process. Third, for many types of measurement, illumination from the 
diode laser is a detriment. Finally, the need of a laser diode, an adjustable mirror, and a photo 
detector prevent the simplification of the scanning head. 

Due to its high stability, precision and low power consumption, the quartz crystal tuning 
fork has become a valuable basic component for frequency measurements. For instance, since 
the late 1960s, mechanical pendulum or spring based watches have largely been replaced by 
crystal watches, which are sufficiently stable for most daily uses. The key component of these 
watches is mass produced at very low cost. Recently, tuning fork based shear force detection, 
as implemented in a large number of near-field scanning optical microscopes (SNOM), has 
proven to be an easy and reliable method by which to control the distance between the probe 
and sample by Karrai and Grober [19]. In following, Giessibl et al. [20] has employed them 
for atomic resolution AFM imaging. Tuning forks have been used as sensors at low tempera-
tures and in high magnetic fields by Rychen et al. [21]. It is said that at this moment the ap-
plications of tuning fork are rather widespread.  

Recently, D. V. Serebryakov et al. [22] reported the new principle for scanning with a tun-
ing fork, which was able to achieve the high quality factor Q, simultaneously decrease the re-
sponse time τ. They have used this transducer for SNOM with the fibre mounted in cover of 
tuning fork to increase the factor Q. However, the preparation of this system is not simple task 
and the factor Q of this system is not high. Based this transducer, the authors have developed    
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an atomic force microscopy based on tuning fork (Fork-AFM) on two operation modes: tap-
ping and shear force mode. In these studies, we have glued directly the tungsten tips and sili-
con cantilever tips to the prong of tuning fork [23]. The process of gluing these tips is not 
complicated. The quality factor of system is rather high, and in general it belongs to the glu-
ing process. Especially, for the silicon tips, the radius of tips is rather small (~10nm), there-
fore it maybe achieved the high resolution of images of the samples. However the expansion 
of the applications of the using the Fork-AFM in investigation the properties of different ma-
terials, especially for the bio-material, is still limited.  

The aim of our work was investigated of human blood cells morphology, namely erythro-
cytes, using a system of a combination between the above transducer and atomic force mi-
croscopy (AFM) NT-206 (Microtestmachines Co.,Belarus) [24] based tuning fork with the 
silicon cantilever tips on two operation regimes: i) intermittent contact mode and ii) shear-
force mode. We discuss the advantages and disadvantages of these modes of operation and 
give wide possibility of analyzing the properties of surface of biological objects with high 
resolution. 

Experimetal setup 
We have used commercially available quartz tuning fork (type 74-530-04 of ELFA Com-

pany), having a resonance frequency 32757 Hz and quality factor Q of 14000 in air after un-
cover the packaging lid, as a force sensor (Fig. 1). The theoretical spring constant is obtained 

from the formula 
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quartz. The length (L), thickness (T) and width (W) of the tuning fork used are 6.01, 0.35 and 
0.61 mm, respectively. Using these parameters, we obtain k ≈ 7 kN/m, which agrees reasona-
bly well with our experimental result. The tips used in our experiment were commercial Con-
tact silicon cantilever CSC21/15 chips produced by MicroMasch that have six straight canti-
levers of different lengths. The cantilever had silicon tips of different length and nominal ra-
dius 10 nm. The manufacturing process of these tips ensures that their properties are repro-
ducible from chip to chip.  

 
 
 
 
 
 
 
 
 

Fig. 1. Photograph of the commercially available quart tuning fork 

To attach the tip to the quartz tuning fork, we glue a cantilever from chip to the end of the 
tuning fork with epoxy two systems glue. The cantilever tip was placed on the tuning fork us-
ing two optical microscopes equipped with a micropositioning stage. After the glue became 
dry, it was easy to break the tip from the rest of the cantilever chip by gently moving the chip 
up and down with respect to the tuning fork.  

Figures 2 a illustrate two mode operations with tuning fork. For operation, a tip was glued 
to the end of the one prong of the tuning fork and that prong is oscillated parallel to the sam-
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ple surface: shear force operation.  Another option is to oscillate the prong perpendicular to 
the surface, as tapping mode operation. Moreover, hardware realization of this scheme was 
performed using mechanical and control electronics systems of atomic force microscope NT-
206 (Microtestmachines Co.) [24]. For receiving the signal and controlling the oscillation 
from tuning fork, we have used the transducer instrument to connect the Fork-AFM (Fig. 2 b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Principle of two operation modes: shear-force and intermittent contact mode (a). Photography 
of system AFM NT-206 using a quartz tuning fork (Fork-AFM). The signals from the tuning fork are 
connected to AFM by the transducer instrument (b) 

Erythrocutes samples were prepared by different ways. The first method is standard for 
clinical laboratory. The drop of fresh human blood (10-20 µl) was applied on the glass surface 
and smeared by the second glass. The thickness of the smear decreases along a direction of 
smearing. In the second method, some drops of fresh human capillary blood were fixed in 2 % 
aqueous glutaraldehyde solution. The cover slips were rinsed with a 2 % aqueous glutaralde-
hyde solution and washed with phosphate buffered saline (PBS). The freshly extracted blood 
was then diluted in PBS and this solution was then added again for 1 minute to rigidify the 
cell. Then the cells were washed with PBS. A preparation was dried up on air at room tem-
perature during several hours.  

Results & Discusions 
Figures 3 and 4 show topographical images and line profile obtained in the shear force 

and intermittent contact mode, respectively, of erythrocytes samples in the air at room tem-
perature. The scanning speed of two mode operations is 0.3 Hz per line, the current through 
the tuning fork is 3nA (the prong vibration amplitude is around 3.8 nm) for shear force mode 
and 2nA for intermittent contact mode. The entire image was obtained in about 15 min for 
resolution 256x256. The set point of the feedback circuit was set at 90 % maximum amplitude 
on resonance. 

The topography of the erythrocytes sample is obtained using shear force detection in air 
in Fig. 3 a. Figure 3 b shows the averaged line profile. From this line profile, the maximum 
height of the feature indicated by an arrow in the image is about 1.8 µm. Here, we observed 
the abrupt change in the shear-mode image. To explaining for the abrupt change, we bring out 
some assumption for explanation in the following way: in this mode, because the tip oscillates 
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parallel to the surface of sample, the area contact between tip and sample is about 30-40 nm. 
Furthermore, the differential height of sample is rather large. Therefore, in this process, the 
instability such as signal drift or tip contamination maybe appear and influence the results 
scanning. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Shear force mode topographical images of erythrocytes. The dimension of images 
is noted in the figure (a). A line profile from 1 to 2 in (a) is show in figure (b) 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Intermittent contact mode topographical images of erythrocytes. The dimen-
sion of images is noted in the figure (a). A line profile from 1 to 2 in (a) is show in 
figure (b) 

On the contrary, figure 4 a shows the topography of erythrocytes in intermittent contact 
mode. The image in Fig. 4 a can be seen as more obviously than the result in Fig. 3 a. From 
this line profile (Fig. 4 b), the maximum height in the image is about 2.3 µm. Clearly, in this 
mode, the area contact between tip and sample is much smaller than shear force mode (about 
10 nm). As a result, the region contact between tip and sample may achieve the atom 
interaction, thus it prevents sample damage, and we could obtain the images with high 
contrast resolution. 

 
a) 

 
b) 

 

 
a) 

 
b) 



VIII Международный семинар  

146

Conclusions 
We have demonstrated a Fork-AFM with silicon cantilever tips operated in two modes 

operation in ambient conditions for investigating the erythrocytes sample. We have obtained 
images with a spatial resolution of not less than 1.5 µm in height after careful calibration. By 
comparing experimental results obtained in intermittent contact and shear mode we observed 
that intermittent contact mode operation gave a much optimum signal control. In addition to 
these results, one can also think of the combination of the tuning fork with the different type 
of tips that allows to inexpensively implement a variety of scanning probe micros copies for 
investigation the properties of biological materials. 
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