РАСЧЕТ ОСЦИЛЛИРУЮЩЕГО ДВИЖЕНИЯ МИКРОЗОНДА ACM B «TAPPING» И «SHEAR FORCE» РЕЖИМАХ

С. О. Пантелей

Белорусский государственный университет, Минск, Беларусь

Введение

В статье представлены результаты численного расчета некоторых параметров и моделирования колебательного движения микроконсоли в полуконтактном режиме работы ACM, а также численного и аналитического расчета влияния силы трения на амплитуду колебаний "shear force" микроконсоли в режиме трибометра.

Движение микроконсоли в «tapping» режиме

При сканировании поверхности между острием зонда и поверхностью образца возникают взаимодействия, которые оказывают значительное влияние на колебания консоли зонда ACM. Взаимодействия имеют различную природу: это могут быть взаимодействия дальнего и ближнего действия, капиллярные, адгезионные, электростатические силы. Все взаимодействия объединяет характерная черта – зависимость от расстояния между острием и поверхностью [1].

При решении задачи описания колебаний консоли в полуконтактном режиме были рассмотрены притягивающие взаимодействия ван-дер-ваальсова типа и отталкивающие взаимодействия ближнего действия. Они универсальны, что делает их постоянно присутствующими, и, когда нет дополнительных внешних полей, являются доминирующими.

За основу для расчета движения консоли берется дифференциальное уравнение второго порядка

$$m\frac{\partial^2 z}{\partial t^2} + \gamma \frac{\partial z}{\partial t} + kz = a_{bm}\sin(\omega t) + F(z).$$
(1)

Здесь m – масса консоли (острие считается невесомым), γ – коэффициент диссипации, k – изгибная жесткость консоли, a_{bm} – амплитуда биморфного пьезоэлемта, создающего вынужденные колебания консоли, ω – частота колебаний биморфного пьезоэлемента, F(z) – силы взаимодействия острия, закрепленного на свободном конце консоли, с поверхностью острия.

Учитывая, что $\omega_0 = \sqrt{\frac{k}{m}}$ и $Q = \frac{m\omega_0}{\gamma}$, удобно привести уравнение (1) к виду:

$$\frac{\partial^2 z}{\partial t^2} + \frac{\omega_0}{Q} \frac{\partial z}{\partial t} + \omega_0^2 z = \omega_0^2 a_{bm} \sin\left(\omega t\right) + \frac{\omega_0^2}{Q} F(z), \qquad (2)$$

где Q – добротность консоли.

Для расчета притягивающей силы *F*_{att} был использован потенциал Леннард– Джонса:

где

$$W_{LJ}(z) = \left[\frac{AR_{tip}}{6\sigma}\right] \left[\frac{1}{210}\left(\frac{\sigma}{z}\right)^7 - \frac{\sigma}{z}\right]$$

 $F_{att}(z) = -\frac{\partial}{\partial} W_{LJ}$

Сила отталкивания

$$F_{ret} = k_s R^{1/2} \left(-d^{3/2} \right)$$

рассчитана по формуле Герца для контакта сферы и плоскости (например, [3]).

Здесь *А* – постоянная Гамакера, σ – межатомное расстояние, *R* – радиус закругления острия, *d* – глубина внедрения острия в поверхность образца.

$$d = z - z_{F_0},$$

$$k_s = \frac{4}{3\pi} \frac{1}{\kappa_{eff}} = \frac{4}{3\pi} \frac{1}{\kappa_1 + \kappa_2}$$

$$\kappa_i = \frac{1 - v_i^2}{\pi E_i}, \quad i = \overline{1, 2},$$

 v_i – коэффициент Пуассона и E_i – модуль упругости острия образца, z_{F_0} – расстояние, при котором силы притягивания и отталкивания уравновешиваются.

Тогда сила взаимодействия острия и образца во время сканирования запишется следующим образом [2]:

$$F(z) = \begin{cases} F_{att}(z), & z > z_{F_0} \\ F_{et}(z), & z \le z_{F_0} \end{cases}.$$
 (3)

При подстановке силы (3) в уравнение движения консоли (2) получим нелинейное дифференциальное уравнение, которое не имеет аналитического решения в общем случае. При использовании численных методов (пакет *Mathematica*) получены графические зависимости, демонстрирующие вид колебаний острия консоли: рис.1,а – неустановившийся режим колебаний (консоль раскачивается), рис. 1,б – установившийся режим колебаний (амплитуда постоянна). Использовались следующие параметры осциллирующей консоли: k=20 H/м, Q=100, $a_{bm}=1$ нм, $z_0=75$ нм (начальное положение острия консоли), $f=f_0=100$ кГц. Штриховой линией для сравнения показаны гармонические колебания консоли вдали от поверхности (F=0). Как видно из графика (рис. 1,6), под влиянием сил взаимодействия острия и поверхности амплитуда колебаний уменьшается.

Рис. 1. Колебания микроконсоли в неустановившемся режиме (а) и в установившемся режиме (б)

Рассчитаны также глубина внедрения острия в поверхность и сила отталкивания при этом для некоторых материалов (сталь, кремний, твердый и мягкий полимеры). Материал острия – кремний (рис. 2).

Результаты следующие:

максимальная деформация мягкого полимера при внедрении в него кремниевого острия $d_{\text{max}} = 3,1 \, \text{нм}$, максимальная сила отталкивания при этом $F_{\text{max}} = 10 \, \text{нH}$;

Рис. 2. Внедрение острия в поверхность кремния (а) и сила отталкивания при этом (б).

максимальная деформация твердого полимера при внедрении в него кремниевого острия $d_{\text{max}} = 1,25 \text{ нм}$, максимальная сила отталкивания при этом $F_{\text{max}} = 30 \text{ нH}$;

максимальная деформация кремния при внедрении в него кремниевого острия $d_{\text{max}} = 0,3 \text{ }$ *нм*, максимальная сила отталкивания при этом $F_{\text{max}} = 140 \text{ }$ *нH*;

максимальная деформация стали при внедрении в него кремниевого острия $d_{\text{max}} = 0,34 \text{ }$ нм, максимальная сила отталкивания при этом $F_{\text{max}} = 170 \text{ }$ нH.

Таким образом, сила отталкивания пропорциональна модулю упругости материала; деформация – обратно пропорциональна. Заметим, что в наших результатах деформация стали больше деформации кремния, хотя сталь тверже. Данный результат объясняется тем, что при обстукивании стали острием кремниевое острие сминается.

Движение микроконсоли в «shear force» режиме

С помощью той же математической модели (1) при использовании той же расчетной схемы в пакете *Mathematica* можно получить графические зависимости для амплитуды и фазы колебаний консоли, расположенной вертикально. Эта задача актуальна в связи с использованием приборов типа "shear force" микротрибометр. Сила F(x) в данном случае является силой трения:

$$F = F \operatorname{sgn} x(t)$$

Исследуемая физическая модель показана на рис. 3. Вертикально расположенная балка консольно закреплена верхним концом на биморфном пьезоэлементе, генерирующем колебания по закону $a_{bm} \sin(\omega t)$. Нижний конец консоли приводится в контакт с горизонтальной поверхностью и испытывает действие силы трения, модуль которой *F*. Важно определить характер влияния силы трения на движение гармонического осциллятора.

Рис. 3. Рассматриваемая физическая модель

В режиме установившихся колебаний система биморф-консоль проявляет автоколебательные свойства и уравнение движения представляет собой дифференциальное уравнение квазилинейной автоколебательной системы с одной степенью свободы, на которую действует гармоническая возмущающая сила. При этом частота силы близка к собственной частоте линеаризованной системы, поскольку обычно возбуждение консоли происходит при резонансе либо при частоте колебаний, близкой к резонансной. Тогда уравнение движения запишется в виде

$$\frac{\partial^2 x}{\partial t^2} + \frac{\omega_0}{Q} \frac{\partial x}{\partial t} + \omega_0^2 x = \omega_0^2 a_{bm} \sin\left(\omega t\right) + \frac{\omega_0^2}{Q} F \operatorname{sgn}(x).$$
(3)

Отметим, что здесь имеет значение то, что декремент затухания γ складывается из двух составляющих: $\gamma = \gamma_c + \gamma_a$, где γ_c – декремент затухания собственно консоли, γ_a – декремент затухания при контакте с поверхностью, зависящий от вязких свойств поверхности образца. На рис. 4 представлены графики колебаний микроконсоли в установившемся и неустановившемся режимах соответственно. Штриховой линией показаны колебания биморфа, увеличенные в Q раз, сплошной линией – колебания консоли вдали от поверхности (большая амплитуда) и колебания под действием силы трения (меньшая амплитуда).

Рис. 4. Колебания микроконсоли в установившемся (а) и неустановившемся (б) режимах

Получены также численные значения для амплитуды и фазы колебаний, по которым построены графики для амплитуды и фазы в зависимости от добротности системы и силы трения вблизи резонанса.

Данная задача решена также аналитически. По методу Ван дер Поля (см., например, [1, стр. 216-223]) получено выражение для амплитуды колебаний. Уравнение для определения амплитуды:

$$\left(-\frac{A\pi\omega\omega_0}{Q}-\frac{4F\omega_0^2}{k}\right)^2+A^2\pi^2\omega^4\left(-1+\frac{\omega_0^2}{\omega^2}\right)=a_{bm}^2\pi^2\omega_0^4.$$

Решая данное уравнение относительно амплитуды колебаний консоли, получили

$$A = \frac{Q\omega_0^2}{k\pi \left(\omega^2 \omega_0^2 + Q^2 \left(\omega^2 - \omega_0^2\right)^2\right)} \left(\pm \sqrt{\left(ka_{bm}\pi\omega\omega_0\right)^2 + Q^2 \left(a_{bm}^2\pi^2 k^2 - 16F^2\right)\left(\omega^2 - \omega_0^2\right)^2} - 4F\omega\omega_0\right).$$
(4)

Теперь выразим из формулы (4) силу трения. После преобразований получим:

$$F = \frac{\pi k}{4Q\omega_0^2} \left(-A\omega\omega_0 + Q\sqrt{a_{bm}^2\omega_0^4 - A^2(\omega^2 - \omega_0^2)^2} \right).$$
(5)

Чаще всего интересен случай резонанса, когда $\omega = \omega_0$. При этом

$$A_0 = a_{bm}Q, \qquad (6)$$

где A_0 – амплитуда гармонических колебаний (при F=0). С учетом (6) выражение для силы трения (5) при резонансе примет вид

$$F = \frac{\pi k}{4Q} (A_0 - A).$$

На рис. 5 представлены графики амплитуды колебаний в зависимости от добротности и силы трения при тех же параметрах. Численные значения амплитуды мало отличаются от значений, вычисленных аналитически по формуле (4) (на 0,21%).

Рис. 5. Зависимости амплитуды колебаний от добротности (а) и силы трения (б)

Обсуждение результатов

Таким образом, рассчитаны глубина внедрения кремниевого острия в поверхность образца (мягкий полимер, твердый полимер, сталь, кремний) и сила отталкивания между острием и образцом для «tapping» режима работы ACM. Получены численные значения для амплитуды колебаний микроконсоли консоли в режиме «shear force» и аналитические выражения для амплитуды и силы трения.

Работа частично финансировалась Белорусским республиканским фондом фундаментальных исследований (проект №Ф03МС-056).

Литература

- 1. Garcia R., Perez R. Dynamic atomic force microscopy methods // Surface Science Reports. 2002. № 47. P. 197-301.
- 2. Sarid D. Exploring scanning probe microscopy with Mathematica. N.-Y.: Jonh Wilei & sons, Inc., 1997.
- 3. Свириденок А.И., Чижик С.А., Петроковец М.И. Механика дискретного фрикционного контакта. Мн.: Навука і тэхніка, 1990.